Cellular and LPWA IoT Device Ecosystems gives a comprehensive overview of the main wide area networking technologies for the Internet of Things – 2G/3G/4G/5G cellular, LoRa, Sigfox and 802.15.4 WAN.

This strategic research report from Berg Insight provides you with 130 pages of unique business intelligence including 5-year industry forecasts and expert commentary on which to base your business decisions.

Highlights from the report:

- **360-degree** overview of the main IoT wide area networking ecosystems.
- **Comparison** of technologies and standards.
- **Updated** profiles of the main suppliers of IoT chipsets and modules.
- **Cellular** IoT module market data for 2019.
- **Early** adoption trends for emerging LPWA technologies.
- **Cellular** and non-3GPP LPWA IoT device market forecasts until 2024.

Order now!

Please visit our web site to order this report and find more information about our other titles at www.berginsight.com
Cellular IoT module shipments reached 265 million units in 2019

The Internet of Things is weaving a new worldwide web of interconnected objects. At the end of 2019, approximately 1.9 billion devices were connected to wide area networks based on cellular or LPWA technologies. The market is highly diverse and divided into multiple ecosystems. This report will focus on the four most prominent technology ecosystems for wide area IoT networking – the 3GPP ecosystem of cellular technologies, the LPWA technologies LoRa and Sigfox and the 802.15.4 ecosystem.

The 3GPP family of cellular technologies support the largest ecosystem in wide area IoT networking. Berg Insight estimates that the global installed base of LoRa devices was approximately 135 million at the beginning of 2020. According to Semtech, the global installed base of LoRa and Sigfox and the 802.15.4 ecosystem.

LoRa is gaining momentum as a global connectivity platform for IoT devices. According to Semtech, the global installed base of LoRa devices was approximately 135 million at the beginning of 2020. The first major volume application segments are smart gas and water metering, where LoRa’s low power consumption matches the requirements for long-life battery operation. LoRa is also gaining traction for metropolitan area and local area IoT deployments as a platform for networking smart sensors and tracking devices in cities, industrial plants, commercial buildings and homes. Semtech has stated that it generated in the range of US$ 74 million in revenues from LoRa chips in its financial year ending in January 2020 and expects to reach US$ 90–120 million in fiscal 2021. Berg Insight estimates that yearly shipments of LoRa devices were 47.0 million units in 2019. Until 2024, yearly shipments are forecasted to grow at a compound annual growth rate (CAGR) of 27.2 percent to reach 156.9 million units. While China accounted for about 60 percent of total shipments in 2019, LoRa device shipments in Europe and North America are expected to scale into significant volumes in the coming years as early adopters move from pilots to large-scale deployments.

Sigfox has very ambitious plans for establishing the technology bearing the company’s name as the leading global platform for ultra-narrow band IoT networks. In order to meet its strategic goals, Sigfox must be able to break into entirely new mass-volume device segments and prove its capability to create value by adding connectivity to things that never communicated before. At the end of 2019, Sigfox reported 15.4 million connected devices. In a positive scenario where early trials ramp up to large-scale commercial deployments, Berg Insight forecasts that shipments of Sigfox devices will grow at a compound annual growth rate (CAGR) of 41.1 percent from 9.4 million units in 2019 to 52.6 million units by 2024.

802.15.4 WAN is an established connectivity platform for private wide area wireless mesh networks used for applications such as smart metering. Faced with increasing competition from emerging LPWA standards, 802.15.4 WAN is however only expected to grow at moderate rate in the coming years. Berg Insight forecasts that shipments of 802.15.4 WAN devices will grow at a compound annual growth rate (CAGR) of 15.5 percent from 22.7 million units in 2019 to 46.6 million units by 2024. Smart metering is expected to account for the bulk of the demand. Wi-SUN is the leading industry standard for smart electricity metering networks in North America, with adoption also spreading to Asia-Pacific and Europe.

This report answers the following questions:

- How will the IoT wide area networking technology market evolve over the next five years?
- Who are the new challengers in the cellular IoT module market?
- Which new mass-volume segments can be addressed by low-cost LPWA technologies?
- Why are the new standards LTE-M and NB-IoT so significant for the cellular IoT ecosystem?
- When will 5G appear in the cellular IoT market?
- Which IoT applications will drive the adoption of 5G?
- What is the current installed base of LoRa and Sigfox?
- What are the prospects for emerging LPWA technology standards?
Executive Summary

1 Wide area networks for the Internet of Things
1.1 Which things will be connected to wide area networks?
1.1.1 Utility meters
1.1.2 Motor vehicles
1.1.3 Buildings
1.1.4 Low value assets – Industry 4.0 and consumer products
1.1.5 Future opportunities in smart cities
1.2 What are the technology options?
1.2.1 Network deployment models
1.2.2 Unlicensed and licensed frequency bands
1.3 Which are the leading technology ecosystems?

2 3GPP ecosystem
2.1 Technology characteristics
2.1.1 3GPP Release 13 – Introducing LTE-M and NB-IoT
2.1.2 3GPP Release 14 – IoT enhancements and C-V2X
2.1.3 3GPP Release 15 – The first phase of 5G specifications
2.1.4 3GPP Release 16 – URLLC enhancements, IIoT features and 5G NR C-V2X
2.1.5 Network footprint
2.1.6 2G mobile networks
2.1.7 3G/4G mobile networks
2.1.8 4G mobile IoT networks (LTE-M and NB-IoT)
2.1.9 5G mobile networks
2.2 Semiconductor vendors
2.2.1 Altair Semiconductor (Sony)
2.2.2 HiSilicon (Huawei)
2.2.3 Intel
2.2.4 MediaTek
2.2.5 Qualcomm
2.2.6 Sequans Communications
2.2.7 UNISOC
2.2.8 Other semiconductor vendors
2.3 Module vendors
2.3.1 Cheerzing
2.3.2 Fibocom
2.3.3 Gosuncn WeLink
2.3.4 MeiG Smart Technology
2.3.5 Neoway
2.3.6 Nordic Semiconductor
2.3.7 Quectel
2.3.8 Sierra Wireless
2.3.9 Sunsea AIoT (SIMCom & Longsun)
2.3.10 Telit
2.3.11 Thales
2.3.12 u-blox
2.3.13 Other cellular IoT module vendors

3 LoRa ecosystem
3.1 Technology characteristics
3.2 Network footprint
3.2.1 Europe
3.2.2 Asia-Pacific
3.2.3 The Americas
3.2.4 Middle East & Africa
3.3 Semiconductor and module vendors
3.3.1 Semtech
3.3.2 Other semiconductor vendors
3.3.3 LoRa module vendors

4 Sigfox ecosystem
4.1 Technology characteristics
4.2 Network footprint
4.2.1 Europe
4.2.2 The Americas
4.2.3 Asia-Pacific
4.2.4 Middle East & Africa
4.2.5 Global satellite coverage planned in collaboration with Eutelsat
4.3 Semiconductor and module vendors
4.3.1 Sigfox module vendors

5 802.15.4 WAN ecosystem
5.1 Technology characteristics
5.1.1 IPv6 connectivity stacks based on 802.15.4
5.1.2 Wi-SUN
5.1.3 ZigBee
5.2 Network footprint
5.3 Chipsets and modules

6 Vertical market segments
6.1 Motor vehicles
6.1.1 OEM connected car applications
6.1.2 Aftermarket connected car applications
6.2 Energy & Infrastructure
6.2.1 Smart electricity metering
6.2.2 Smart gas and water metering
6.2.3 Smart cities
6.3 Industry & Transport
6.4 Healthcare
6.5 Other
6.5.1 Buildings & security
6.5.2 Consumer products
6.5.3 Payments

7 Market forecasts and trends
7.1 Market summary
7.2 3GPP family
7.2.1 Cellular IoT module market forecast
7.2.2 Europe
7.2.3 North America
7.2.4 Latin America
7.2.5 Asia-Pacific
7.2.6 Middle East & Africa
7.3 LoRa
7.4 Sigfox
7.5 802.15.4 WAN

Glossary
You can place your order in the following alternative ways:

1. Place your order online in our web shop at www.berginsight.com
2. Mail this order sheet to us at: Berg Insight AB, Viktoriagatan 3, 411 25 Gothenburg, Sweden
3. Email your order to: info@berginsight.com
4. Phone us at +46 31 711 30 91

Reports will be dispatched once full payment has been received. For any enquiries regarding this, please contact us. Payment may be made by credit card, cheque made payable to Berg Insight AB, Viktoriagatan 3, 411 25 Gothenburg, Sweden or by direct bank transfer to Skandinaviska Enskilda Banken, 106 40 Stockholm, Sweden.

Account Holder: Berg Insight AB
Account number: 5011 10 402 80
BIC/SWIFT: ESSESESS
IBAN: SE92 5000 0000 0501 1104 0280

We enclose our cheque payable to Berg Insight AB

Please invoice me

Signature Date